Related Problem with Solution:

Find (a) the total number and (b) the total mass of protons in 34 mg of NH_3 at STP.

Ans:

Step I. Calculation of total number of NH₃ molecules Gram molecular mass of ammonia (NH₃) = 17 g = 17×10^3 mg 17×10^3 mg of NH₃ have molecules = 6.022×10^{23}

34 mg of NH₃ have molecules =
$$\frac{6.022 \times 10^{23}}{(17 \times 10^3 \text{ mg})} \times (34 \text{ mg})$$

= 1.2044×10^{20} molecules.

Step II. Calculation of total number and mass of protons No. of protons present in one molecule of NH $_3$ = 7 + 3 = 10 . No. of protons present in 12.044 × 10²⁰ molecules of NH $_3$ = 12.044 × 10²⁰ × 10 = 1.2044 × 10²² protons Mass of one proton = 1.67 × 10⁻²⁷ kg Mass of 1.2044 × 10²² protons = (1.67 × 10⁻²⁷ kg) × 1.2044 × 10²² = 2.01 × 10⁻⁵ kg.

No, the answer will not change upon changing the temperature and pressure because only the number of protons and mass of protons are involved.